Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.021 seconds
AbstractAbstract
[en] This paper is concerned with a lesser-studied problem in the context of model-based, uncertainty quantification (UQ), that of optimization/design/control under uncertainty. The solution of such problems is hindered not only by the usual difficulties encountered in UQ tasks (e.g. the high computational cost of each forward simulation, the large number of random variables) but also by the need to solve a nonlinear optimization problem involving large numbers of design variables and potentially constraints. We propose a framework that is suitable for a class of such problems and is based on the idea of recasting them as probabilistic inference tasks. To that end, we propose a Variational Bayesian (VB) formulation and an iterative VB–Expectation-Maximization scheme that is capable of identifying a local maximum as well as a low-dimensional set of directions in the design space, along which, the objective exhibits the largest sensitivity. We demonstrate the validity of the proposed approach in the context of two numerical examples involving thousands of random and design variables. In all cases considered the cost of the computations in terms of calls to the forward model was of the order of 100 or less. The accuracy of the approximations provided is assessed by information-theoretic metrics.
Primary Subject
Source
S0021-9991(15)00850-5; Available from http://dx.doi.org/10.1016/j.jcp.2015.12.031; Copyright (c) 2015 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue