Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.016 seconds
Roteta, Miguel; Fernández-Martínez, Rodolfo; Mejuto, Marcos; Rucandio, Isabel, E-mail: miguel.roteta@ciemat.es2016
AbstractAbstract
[en] A new method for the preparation of conductive thin films is presented. The metallization of VYNS films guarantees the electrical conductivity but it results in the breaking of a high proportion of them. Graphene, a two-dimensional nanostructure of monolayer or few layers graphite has attracted a great deal of attention because of its excellent properties such as a good chemical stability, mechanical resistance and extraordinary electronic transport properties. In this work, the possibilities of graphene have been explored as a way to produce electrical conductive thin films without an extra metallization process. The procedure starts with preparing homogenous suspensions of reduced graphene oxide (rGO) in conventional VYNS solutions. Ultra-sonication is used to ensure a good dispersibility of rGO. Graphene oxide (GO) is prepared via oxidation of graphite and subsequent exfoliation by sonication. Different chemically rGO were obtained by reaction with hydrazine sulfate, sodium borohydride, ascorbic acid and hydroiodic acid as reducing agents. The preparation of the thin graphene films is done in a similar way as the conventional VYNS foil preparation procedure. Drops of the solution are deposited onto water. The graphene films have been used to prepare sources containing some electron capture radionuclides ("1"0"9Cd, "5"5Fe, "1"3"9Ce) with an activity in the order of 3 kBq. The samples have been measured to test the attainable low energy electron efficiency and the energy resolution of Auger and conversion electrons by 4π (electron capture)-γ coincidence measurements. The 4π (electron capture)-γ coincidence setup includes a pressurized proportional counter and a NaI(Tl) detector. Tests with different pressures up to 1000 kPa were carried out. All these tests show similar values in both parameters (efficiency and resolution) as those obtained by using the conventional metallized films without the drawback of the high percentage of broken films. - Highlights: • Graphene thin films prepared for radioactive samples. • Analysis of thin films. • Films are used for 4πβ-γ coincidence measurements.
Primary Subject
Source
20. international conference on radionuclide metrology and its applications; Vienna (Austria); 8-11 Jun 2015; S0969-8043(15)30284-0; Available from http://dx.doi.org/10.1016/j.apradiso.2015.11.050; Copyright (c) 2015 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Literature Type
Conference
Journal
Country of publication
BETA DECAY RADIOISOTOPES, CADMIUM ISOTOPES, CAPTURE, CARBON, CARBON COMPOUNDS, CERIUM ISOTOPES, CHALCOGENIDES, CHEMICAL REACTIONS, COUNTING TECHNIQUES, DAYS LIVING RADIOISOTOPES, ELECTRICAL PROPERTIES, ELECTRON CAPTURE RADIOISOTOPES, ELEMENTARY PARTICLES, ELEMENTS, EVEN-ODD NUCLEI, FERMIONS, FILMS, HALOGEN COMPOUNDS, HYDROGEN COMPOUNDS, INORGANIC ACIDS, INORGANIC COMPOUNDS, INTERMEDIATE MASS NUCLEI, IODINE COMPOUNDS, IRON ISOTOPES, ISOMERIC TRANSITION ISOTOPES, ISOTOPES, LEPTONS, MEASURING INSTRUMENTS, MINERALS, NITROGEN COMPOUNDS, NONMETALS, NUCLEI, OXIDES, OXYGEN COMPOUNDS, PHYSICAL PROPERTIES, RADIATION DETECTORS, RADIOISOTOPES, RARE EARTH NUCLEI, RESOLUTION, SECONDS LIVING RADIOISOTOPES, VITAMINS, YEARS LIVING RADIOISOTOPES
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue