Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.029 seconds
AbstractAbstract
[en] In an integrated impact assessment, one has to test several scenarios of the model inputs or/and to identify the effects of model input uncertainties on the model outputs. In both cases, a large number of simulations of the model is necessary. That of course is not feasible with comprehensive Chemistry-Transport Model, due to the need for huge CPU times. Two approaches may be used in order to circumvent these difficulties: The first approach consists in reducing the computational cost of the original model by building a reduced model. Two reduction techniques are used: the first method, POD, is related to the statistical behaviour of the system and is based on a proper orthogonal decomposition of the solutions. The second method, is an efficient representation of the input/output behaviour through look-up tables. It describes the output model as an expansion of finite hierarchical correlated function in terms of the input variables. The second approach is based on reducing the number of models runs required by the standard Monte Carlo methods. It characterizes the probabilistic response of the uncertain model output as an expansion of orthogonal polynomials according to model inputs uncertainties. Then the classical Monte Carlo simulation can easily be used to compute the probability density of the uncertain output. Another key point in an integrated impact assessment is to develop strategies for the reduction of emissions by computing Source/Receptor matrices for several years of simulations. We proposed here an efficient method to calculate these matrices by using the adjoint model and in particular by defining the 'representative chemical day'. All of these methods are applied to POLAIR3D, a Chemistry-Transport model developed in this thesis. (author)
[fr]
Dans une modelisation integree des impacts, l'objectif est de tester plusieurs scenarios d'entrees de modele et/ ou d'identifier l'effet de l'incertitude des entrees sur les sorties de modele. Dans les deux cas, un grand nombre de simulations de modele sont necessaires. Cela reste bien evidemment infaisable avec un modele de Chimie-Transport a cause du temps CPU demande. Pour surmonter cette difficulte, deux approches ont ete etudiees dans cette these: La premiere consiste a construire un modele reduit. Deux techniques ont ete utilisees: la premiere est la methode POD (Proper Orthogonal Decomposition) liee au comportement statistique du systeme. La seconde methode est une methode efficace de pretabulation fondee sur la troncature d'un developpement multivariables de la relation Entrees/ sorties associe au modele. La seconde est relative a la reduction du nombre de simulations demande par la methode Monte-Carlo classique de propagation d'incertitude. La technique utilisee ici est basee sur une representation d'une sortie de modele incertaine comme un developpement de polynomes orthonormaux de variables d'entrees. Un autre point cle dans la modelisation integree d'impacts est de developper des strategies de reduction des emissions en calculant des matrices de transfert sur plusieurs annees de simulation. Une methode efficace de calcul de ces matrices a ete ainsi developpee, notamment en definissant des scenarios 'chimiquement' representatifs. L'ensemble de ces methodes a ete applique au modele POLAIR3D, modele de Chimie-Transport developpe dans le cadre de cette these. (auteur)Original Title
Methodes de reduction et de propagation d'incertitudes: application a un modele de chimie-transport pour la modelisation et la simulation des impacts
Primary Subject
Source
30 Sep 2004; 355 p; 104 refs.; Available from the INIS Liaison Officer for France, see the 'INIS contacts' section of the INIS web site for current contact and E-mail addresses: http://www.iaea.org/inis/Contacts/; These de doctorat de l'Ecole Nationale des Ponts et Chaussees, Specialite: Mathematiques et Informatique
Record Type
Miscellaneous
Literature Type
Thesis/Dissertation
Report Number
Country of publication
ADVECTION, ALGORITHMS, ATMOSPHERIC CHEMISTRY, ATMOSPHERIC CIRCULATION, CHEMICAL REACTION KINETICS, COMPUTERIZED SIMULATION, DATA COVARIANCES, DETERMINISTIC ESTIMATION, DIFFUSION, MONTE CARLO METHOD, NONLINEAR PROBLEMS, P CODES, POLYNOMIALS, SENSITIVITY ANALYSIS, STATISTICAL MODELS, STOCHASTIC PROCESSES, TRANSFER FUNCTIONS
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue