Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.015 seconds
Marquès, Montse; Mari, Montse; Sierra, Jordi; Nadal, Martí; Domingo, José L., E-mail: marti.nadal@urv.cat2017
AbstractAbstract
[en] The photodegradation of polycyclic aromatic hydrocarbons (PAHs) may be an important degradation pathway of PAHs in regions with a high solar radiation. The present investigation was aimed at studying the photodegradation of PAHs after their deposition on surface soils with different textures. Photodegradation by-products were also identified and semi-quantified, as well as correlated with the decrease of parent compounds. The experiment was performed by deploying soil samples spiked with a mixture of the 16 US EPA priority PAHs in a methacrylate box, exposed to solar radiation for 7 days, meaning a solar energy of 102.6 MJ m−2. As hypothesized, the individual PAHs were volatilized, sorbed and/or photodegraded, depending on their physicochemical properties, as well as the soil characteristics. Low and medium molecular weight PAHs were more sorbed and photodegraded in fine-textured Regosol soil, while a higher volatilization was observed in the coarse-textured Arenosol soil. In contrast, high molecular weight PAHs were more photodegraded in Arenosol soil. Specially low half-lives were noted for anthracene and benzo(a)pyrene, agreeing with previous findings at laboratory scale. Nine by-products were identified, including oxy-, nitro- and hydro-PAHs, whose toxic and mutagenic potential might be higher than the 16 priority PAHs. - Graphical abstract: Experimental set-up. - Highlights: • PAHs in natural soils may photodegrade 20-times faster than in the laboratory. • The number and formation speed of by-products is considerably higher in the field. • Photodegradation of LMW and MMW PAHs is more remarkable in fine-textured soils. • Despite its structure, benzo(a)pyrene was quickly photodegraded in Arenosol soil.
Primary Subject
Source
S0048-9697(16)32850-9; Available from http://dx.doi.org/10.1016/j.scitotenv.2016.12.161; Copyright (c) 2016 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue