Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.016 seconds
AbstractAbstract
[en] A method is presented for determining the ideal magnetohydrodynamic stability of an axisymmetric toroidal plasma, based on a toroidal generalization of the method developed by Newcomb for fixed-boundary modes in a cylindrical plasma. For toroidal mode number n≠0, the stability problem is reduced to the numerical integration of a high-order complex system of ordinary differential equations, the Euler-Lagrange equation for extremizing the potential energy, for the coupled amplitudes of poloidal harmonics m as a function of the radial coordinate ψ in a straight-fieldline flux coordinate system. Unlike the cylindrical case, different poloidal harmonics couple to each other, which introduces coupling between adjacent singular intervals. A boundary condition is used at each singular surface, where m = nq and q(ψ) is the safety factor, to cross the singular surface and continue the solutions beyond it. Fixed-boundary instability is indicated by the vanishing of a real determinant of a Hermitian complex matrix constructed from the fundamental matrix of solutions, the generalization of Newcomb's crossing criterion. In the absence of fixed-boundary instabilities, an M × M plasma response matrix WP with M the number of poloidal harmonics used, is constructed from the Euler-Lagrange solutions at the plasma-vacuum boundary. This is added to a vacuum response matrix WV to form a total response matrix WT. Finally, the existence of negative eigenvalues of WT indicates the presence of free-boundary instabilities. The method is implemented in the fast and accurate DCON code.
Primary Subject
Source
OSTIID--1418989; SC0016106; AC02-09CH11466; W-7405-ENG-36; Available from https://www.osti.gov/pages/servlets/purl/1418989; DOE Accepted Manuscript full text, or the publishers Best Available Version will be available free of charge after the embargo period
Record Type
Journal Article
Journal
Physics of Plasmas; ISSN 1070-664X;
; v. 23(7); vp

Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
External URLExternal URL