Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.013 seconds
Pintore, F.; Tiengo, A.; Mereghetti, S.
SLAC National Accelerator Laboratory, Menlo Park, CA (United States). Funding organisation: USDOE (United States)2017
SLAC National Accelerator Laboratory, Menlo Park, CA (United States). Funding organisation: USDOE (United States)2017
AbstractAbstract
[en] Here, we report on the X-ray dust-scattering features observed around the afterglow of the gamma-ray burst GRB 160623A. With an XMM–Newton observation carried out ~2 d after the burst, we found evidence of at least six rings, with angular size expanding between ~2 and 9 arcmin, as expected for X-ray scattering of the prompt gamma-ray burst (GRB) emission by dust clouds in our Galaxy. From the expansion rate of the rings, we measured the distances of the dust layers with extraordinary precision: 528.1 ± 1.2, 679.2 ± 1.9, 789.0 ± 2.8, 952 ± 5, 1539 ± 20 and 5079 ± 64 pc. A spectral analysis of the ring spectra, based on an appropriate dust-scattering model (BARE-GR-B) and the estimated burst fluence, allowed us to derive the column density of the individual dust layers, which are in the range 7 × 1020–1.5 × 1022 cm–2. The farthest dust layer (i.e. the one responsible for the smallest ring) is also the one with the lowest column density and it is possibly very extended, indicating a diffuse dust region. The properties derived for the six dust layers (distance, thickness and optical depth) are generally in good agreement with independent information on the reddening along this line of sight and on the distribution of molecular and atomic gas.
Primary Subject
Source
OSTIID--1419258; AC02-76SF00515; Available from https://www.osti.gov/pages/biblio/1419258; DOE Accepted Manuscript full text, or the publishers Best Available Version will be available free of charge after the embargo period; Country of input: United States
Record Type
Journal Article
Journal
Monthly Notices of the Royal Astronomical Society; ISSN 0035-8711;
; v. 472(2); p. 1465-1472

Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
External URLExternal URL