Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.02 seconds
Martinez, D. A.; Smalyuk, V. A.; MacPhee, A. G.; Milovich, J.; Casey, D. T.
Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States). Funding organisation: USDOE (United States)2017
Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States). Funding organisation: USDOE (United States)2017
AbstractAbstract
[en] Hydrodynamic instability growth of the capsule support membranes (or “tents”) and fill tubes has been studied in spherical, glow discharge polymer plastic capsule implosions at the National Ignition Facility (NIF). In NIF implosions, the capsules are supported by tents because the nominal 10-μm thick fill tubes are not strong enough to support capsules by themselves. After it was recognized that the tents had a significant impact of implosion stability, new support methods were investigated, including thicker, 30-μm diameter fill tubes and cantilevered fill tubes, as described in this article. A new “sub-scale” version of the existing x-ray radiography platform was developed for measuring growing capsule perturbations in the acceleration phase of implosions. It was calibrated using hydrodynamic growth measurements of pre-imposed capsule modulations with Legendre modes of 60, 90, 110, and 140 at convergence ratios up to ~2.4. Subsequent experiments with 3-D perturbations have studied instability growth of 10-μm and 30-μm thick fill tubes to compare them with 30-nm thick tent perturbations at convergence ratios up to ~3. In other experiments, the perturbations from cantilevered fill tubes were measured and compared to the tent perturbations. The cantilevered fill tubes were supported by 12-μm thick SiC rods, offset by 100 μm, 200 μm, and 300 μm from the capsule surfaces. Based on these experiments, 30-μm thick fill tubes and 300-μm offset cantilevered fill tubes were recommended for further tests using layered deuterium-tritium implosions. In conclusion, the effects of x-ray shadowing during the drive and oxygen-induced perturbations during target assembly produced additional seeds for instabilities and were also measured in these experiments.
Primary Subject
Secondary Subject
Source
LLNL-JRNL--733705; OSTIID--1420290; AC52-07NA27344; NA0001808; Available from https://www.osti.gov/pages/biblio/1420290; DOE Accepted Manuscript full text, or the publishers Best Available Version will be available free of charge after the embargo period
Record Type
Journal Article
Journal
Physics of Plasmas; ISSN 1070-664X;
; v. 24(10); vp

Country of publication
CARBIDES, CARBON COMPOUNDS, CONFIGURATION, CONTAINERS, ELECTRIC DISCHARGES, FLUID MECHANICS, INDUSTRIAL RADIOGRAPHY, MATERIALS, MATERIALS TESTING, MECHANICS, NONDESTRUCTIVE TESTING, ORGANIC COMPOUNDS, ORGANIC POLYMERS, PETROCHEMICALS, PETROLEUM PRODUCTS, POLYMERS, SILICON COMPOUNDS, SYNTHETIC MATERIALS, TESTING
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
External URLExternal URL