Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.016 seconds
Moon, E. J.; He, Q.; Ghosh, S.; SRM University, Kattankulathur; Kirby, B. J.
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Funding organisation: USDOE Office of Science - SC, Basic Energy Sciences (BES) (SC-22). Materials Sciences & Engineering Division (United States); USDOE Office of Science - SC, Basic Energy Sciences (BES) (SC-22) (United States)2017
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Funding organisation: USDOE Office of Science - SC, Basic Energy Sciences (BES) (SC-22). Materials Sciences & Engineering Division (United States); USDOE Office of Science - SC, Basic Energy Sciences (BES) (SC-22) (United States)2017
AbstractAbstract
[en] Modulation and δ-doping strategies, in which atomically thin layers of charged dopants are precisely deposited within a heterostructure, have played enabling roles in the discovery of new physical behavior in electronic materials. Here in this paper, we demonstrate a purely structural “δ-doping” strategy in complex oxide heterostructures, in which atomically thin manganite layers are inserted into an isovalent manganite host, thereby modifying the local rotations of corner-connected MnO6 octahedra. Combining scanning transmission electron microscopy, polarized neutron reflectometry, and density functional theory, we reveal how local magnetic exchange interactions are enhanced within the spatially confined regions of suppressed octahedral rotations. Finally, the combined experimental and theoretical results illustrate the potential to utilize noncharge-based approaches to “doping” in order to enhance or suppress functional properties within spatially confined regions of oxide heterostructures.
Source
OSTIID--1422576; AC05-00OR22725; FG02-09ER46554; AC02-05CH11231; Available from https://www.osti.gov/pages/biblio/1422576; DOE Accepted Manuscript full text, or the publishers Best Available Version will be available free of charge after the embargo period
Record Type
Journal Article
Journal
Physical Review Letters; ISSN 0031-9007;
; v. 119(19); vp

Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue