Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.021 seconds
Goldston, R J; Schwartz, J A; Reinke, M L, E-mail: goldston@pppl.gov2017
AbstractAbstract
[en] The ITER design, and future reactor designs, depend on divertor ‘detachment,’ whether partial, pronounced or complete, to limit heat flux to plasma-facing components and to limit surface erosion due to sputtering. It would be valuable to have a measure of the difficulty of achieving detachment as a function of machine parameters, such as input power, magnetic field, major radius, etc. Frequently the parallel heat flux, estimated typically as proportional to P sep/ R or P sep B / R , is used as a proxy for this difficulty. Here we argue that impurity cooling is dependent on the upstream density, which itself must be limited by a Greenwald-like scaling. Taking this into account self-consistently, we find the impurity fraction required for detachment scales dominantly as power divided by poloidal magnetic field. The absence of any explicit scaling with machine size is concerning, as P sep surely must increase greatly for an economic fusion system, while increases in the poloidal field strength are limited by coil technology and plasma physics. This result should be challenged by comparison with 2D divertor codes and with measurements on existing experiments. Nonetheless, it suggests that higher magnetic field, stronger shaping, double-null operation, ‘advanced’ divertor configurations, as well as alternate means to handle heat flux such as metallic liquid and/or vapor targets merit greater attention. (paper)
Primary Subject
Source
Available from http://dx.doi.org/10.1088/1361-6587/aa5e6e; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue