Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.017 seconds
Zhang Dingzong; Wang Yanhui; Wang Dezhen, E-mail: zhangdingzong2006@163.com2016
AbstractAbstract
[en] An in-depth and comprehensive understanding of the complex nonlinear behaviors in atmospheric dielectric barrier discharge is significant for the stable operation and effective control of the plasma. In this paper, we study the nonlinear behaviors in argon atmospheric dielectric barrier multi pulse discharges by a one-dimensional fluid model. Under certain conditions, the multi pulse discharge becomes very sensitive with the increase of frequency, and the multi pulse period-doubling bifurcation, inverse period-doubling bifurcation and chaos appear frequently. The discharge can reach a relatively steady state only when the discharges are symmetrical between positive and negative half cycle. In addition, the effects of the voltage on these nonlinear discharges are also studied. It is found that the amplitude of voltage has no effects on the number of discharge pulses in multi-pulse period-doubling bifurcation sequences; however, to a relatively stable periodic discharge, the discharge pulses are proportional to the amplitude of the applied voltage within a certain range. (paper)
Primary Subject
Source
Available from http://dx.doi.org/10.1088/1009-0630/18/8/06; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
Plasma Science and Technology; ISSN 1009-0630;
; v. 18(8); p. 826-831

Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue