Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.018 seconds
AbstractAbstract
[en] For the first time green route method was used to synthesize pure and Mg2+(1-11 mol %) doped Y2O3 nanophosphors by using Mimosa pudica leaves extract as a fuel. The final product was well characterized by powder x-ray diffraction (PXRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), diffuse reflectance spectroscopy (DRS) and photoluminescence (PL).The PXRD result shows the formation of single phase, cubic structure of Y2O3 with crystallite sizes ∼25 nm. The SEM results showed porous and agglomerated structures, TEM images showed the crystallite size of the material and was found to be around ∼ 25 nm. PL emission spectra show the blue light emission under the excitation wavelength of 315 nm. The emission peaks of Mg2+were observed at 428 nm, 515 nm and 600 nm corresponding to the transitions of 4F9/2 → 6Hi7/2 (violet), 4F9/2 → 6Hi5/2 (blue), 4F9/2 → 6HJ3/2 (yellow) respectively. The estimated CIE chromaticity co-ordinate was very close to the national television standard committee value of blue emission. CCT was found to be ∼ 6891 K as a result the present phosphor was potential to be used for warm white light emitting display applications. (paper)
Source
IConAMMA-2016: International conference on advances in materials and manufacturing applications; Bangalore (India); 14-16 Jul 2016; Available from http://dx.doi.org/10.1088/1757-899X/149/1/012177; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Literature Type
Conference
Journal
IOP Conference Series. Materials Science and Engineering (Online); ISSN 1757-899X;
; v. 149(1); [4 p.]

Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue