Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.014 seconds
AbstractAbstract
[en] It is proposed to use the multiperiod binanolayer composites (TiAlSi)N/MeN (Me-Zr, Nb, Cr, Mo) for controlling the structure, stress state and mechanical properties of a multi-element nitride (TiAlSi)N. The deposition of the layers was carried out by the method of vacuum-arc evaporation at different bias potentials on the substrate Ub = -110 and -200 V. It has been determined that mononitrides with a high Me-N binding energy in the binanolayer composite determine the crystallite growth in thin (nanometer) layers. The growth texture is formed in composites containing mononitrides based on transition metals with a relatively small atomic mass (Cr, Mo) at Ub = -110 V. The growth texture is formed at a larger Ub = -200 V when dealing with mononitride based on heavy metal (Zr). The greatest hardness is achieved in textured materials deposited at Ub = -200 V. This is typical both for a monolayer multi-element nitride (TiAlSi)N (hardness is 42.5 GPa) and for multiperiod nanolayer composites based on it (the highest hardness is 47.9 GPa for a composite (TiAlSi)N/ZrN).
Primary Subject
Record Type
Journal Article
Journal
Voprosy Atomnoj Nauki i Tekhniki; ISSN 1562-6016;
; (no.1-113); p. 173-180

Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue