Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.014 seconds
Badgujar, S; Forgeas, A; Navion-Maillot, N; Monneret, E; Grillot, D; Benkheira, L; Shah, N; Sarkar, B, E-mail: satish.badgujar@iter.org2017
AbstractAbstract
[en] The ITER cryoline (CL) system consists of a complex network of vacuum insulated multi and single process pipe (PP) lines distributed over three different areas at ITER site. The installation of these CLs in the Tokamak building is a very challenging and highly integrated task due to the presence of many equipment in their vicinity. Dedicated study has been performed to develop the realistic plan and to figure out constraints for complete realization of the CL network. This study includes the concept for assembly and installation of CLs within restricted premises of the Tokamak building, to fulfil the objective of generating technical inputs, defining the processes, construction sequence, tooling, resources and thorough understanding of one of the most challenging network of CLs in present time. The installation sequence for all the CLs inside Tokamak building has also been developed to respect the ITER Construction Master Schedule. The paper describes the ITER CL system, the assembly and installation plan developed considering the layout constraints and complexity arising from the integrated installation in the Tokamak building. (paper)
Primary Subject
Source
26. international cryogenic engineering conference; New Delhi (India); 7-11 Mar 2016; International cryogenic materials conference 2016; New Delhi (India); 7-11 Mar 2016; Available from http://dx.doi.org/10.1088/1757-899X/171/1/012051; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Literature Type
Conference
Journal
IOP Conference Series. Materials Science and Engineering (Online); ISSN 1757-899X;
; v. 171(1); [8 p.]

Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue