Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.015 seconds
Ahammed, M.; Mondal, M.; Naik, V.; Saha, S.; Harmer, P.; Kishi, D.; Kolb, P.; Koveshnikov, A.; Laxdal, R.; Ma, Y.; Muller, N.; Nagimov, R.; Zvyagintsev, V., E-mail: akovesh@triumf.ca2017
AbstractAbstract
[en] The combined R and D efforts of engineers and scientists from both TRIUMF and VECC have resulted in production of a superconducting Injector Cryomodule operating at 1.3 GHz. The design utilizes a unique box cryomodule with a top-loading cold mass. Liquid helium supplied at 4.4 K is converted to superfluid helium-II on board the cryomodule. A 4 K phase separator, 4 K / 2 K heat exchanger and Joule-Thompson valve are installed on the cryomodule to produce 2 K liquid helium. Two identical (by their parameters) cryomodules have been manufactured at TRIUMF. The Injector Cryomodule (ICM) has been tested and commissioned in June of 2014 and is the first cryomodule for the ARIEL e-linac at TRIUMF. The Injector Cryomodule for VECC (VECC ICM) is currently at the finishing stage of its assembly and will undergo cryogenic tests in Q1 of 2016 followed by RF and beam tests at TRIUMF before being shipped to India. The particularities of the design as well as results of the cryogenic and RF performance are presented in this paper. (paper)
Primary Subject
Source
26. international cryogenic engineering conference; New Delhi (India); 7-11 Mar 2016; International cryogenic materials conference 2016; New Delhi (India); 7-11 Mar 2016; Available from http://dx.doi.org/10.1088/1757-899X/171/1/012113; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Literature Type
Conference
Journal
IOP Conference Series. Materials Science and Engineering (Online); ISSN 1757-899X;
; v. 171(1); [6 p.]

Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue