Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.016 seconds
Singh, G K; Nimavat, H; Panchal, R; Garg, A; Srikanth, GLN; Patel, K; Shah, P; Tanna, V L; Pradhan, S, E-mail: gaurav.singh@ipr.res.in2017
AbstractAbstract
[en] A 6-m long liquid nitrogen based cryo transfer line has been designed, developed and tested at IPR. The test objectives include the thermo-hydraulic characteristics of Cryo transfer line under single phase as well as two phase flow conditions. It is always easy in experimentation to investigate the thermo-hydraulic parameters in case of single phase flow of cryogen but it is real challenge when one deals with the two phase flow of cryogen due to availibity of mass flow measurements (direct) under two phase flow conditions. Established models have been reported in the literature where one of the well-known model of Lockhart-Martenelli relationship has been used to determine the value of quality at the outlet of Cryo transfer line. Under homogenous flow conditions, by taking the ratio of the single-phase pressure drop and the two-phase pressure drop, we estimated the quality at the outlet. Based on these equations, vapor quality at the outlet of the transfer line was predicted at different heat loads. Experimental rresults shown that from inlet to outlet, there is a considerable increment in the pressure drop and vapour quality of the outlet depending upon heat load and mass flow rate of nitrogen flowing through the line. (paper)
Primary Subject
Source
26. international cryogenic engineering conference; New Delhi (India); 7-11 Mar 2016; International cryogenic materials conference 2016; New Delhi (India); 7-11 Mar 2016; Available from http://dx.doi.org/10.1088/1757-899X/171/1/012061; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Literature Type
Conference
Journal
IOP Conference Series. Materials Science and Engineering (Online); ISSN 1757-899X;
; v. 171(1); [6 p.]

Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue