Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.019 seconds
Abbott, B. P.; Abbott, R.; Adhikari, R. X.; Abbott, T. D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adya, V. B.; Affeldt, C.; Afrough, M.; Agarwal, B.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.
LIGO Scientific Collaboration and Virgo Collaboration2017
LIGO Scientific Collaboration and Virgo Collaboration2017
AbstractAbstract
[en] We present the results of a semicoherent search for continuous gravitational waves from the low-mass X-ray binary Scorpius X-1, using data from the first Advanced LIGO observing run. The search method uses details of the modeled, parametrized continuous signal to combine coherently data separated by less than a specified coherence time, which can be adjusted to trade off sensitivity against computational cost. A search was conducted over the frequency range 25–, spanning the current observationally constrained range of binary orbital parameters. No significant detection candidates were found, and frequency-dependent upper limits were set using a combination of sensitivity estimates and simulated signal injections. The most stringent upper limit was set at , with comparable limits set across the most sensitive frequency range from 100 to . At this frequency, the 95% upper limit on the signal amplitude h 0 is marginalized over the unknown inclination angle of the neutron star’s spin, and assuming the best orientation (which results in circularly polarized gravitational waves). These limits are a factor of 3–4 stronger than those set by other analyses of the same data, and a factor of ∼7 stronger than the best upper limits set using data from Initial LIGO science runs. In the vicinity of , the limits are a factor of between 1.2 and 3.5 above the predictions of the torque balance model, depending on the inclination angle; if the most likely inclination angle of 44° is assumed, they are within a factor of 1.7.
Primary Subject
Source
Available from http://dx.doi.org/10.3847/1538-4357/aa86f0; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue