Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.016 seconds
Grzȩdzielski, Mikołaj; Janiuk, Agnieszka; Czerny, Bożena, E-mail: mikolaj@cft.edu.pl2017
AbstractAbstract
[en] The thermal stability of accretion disks and the possibility of seeing a limit-cycle behavior strongly depends on the ability of the disk plasma to cool down. Various processes connected with radiation–matter interaction appearing in hot accretion disk plasma contribute to opacity. For the case of geometrically thin and optically thick accretion disks, we can estimate the influence of several different components of function κ, given by the Roseland mean. In the case of high temperatures of ∼107 K, the electron Thomson scattering is dominant. At lower temperatures, atomic processes become important. The slope can have a locally stabilizing or destabilizing effect on the disk. Although the local MHD simulation postulates the stabilizing influence of the atomic processes, only the global time-dependent model can reveal the global disk stability range estimation. This is due to the global diffusive nature of those processes. In this paper, using the previously tested GLADIS code with a modified prescription of the viscous dissipation, we examine the stabilizing effect of the iron opacity bump.
Primary Subject
Source
Available from http://dx.doi.org/10.3847/1538-4357/aa7dd9; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue