Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.018 seconds
Fung, Jeffrey; Dong, Ruobing, E-mail: jeffrey.fung@berkeley.edu2015
AbstractAbstract
[en] Recent observations of protoplanetary disk have reported spiral structures that are potential signatures of embedded planets, and modeling efforts have shown that a single planet can excite multiple spiral arms, in contrast to conventional disk–planet interaction theory. Using two and three-dimensional hydrodynamics simulations to perform a systematic parameter survey, we confirm the existence of multiple spiral arms in disks with a single planet, and discover a scaling relation between the azimuthal separation of the primary and secondary arm, and the planet-to-star mass ratio q: for companions between Neptune mass and 16 Jupiter masses around a 1 solar mass star, and for brown dwarf mass companions. This relation is independent of the disk’s temperature, and can be used to infer a planet’s mass to within an accuracy of about 30% given only the morphology of a face-on disk. Combining hydrodynamics and Monte-Carlo radiative transfer calculations, we verify that our numerical measurements of are accurate representations of what would be measured in near-infrared scattered light images, such as those expected to be taken by Gemini/GPI, Very Large Telescope/SPHERE, or Subaru/SCExAO in the future. Finally, we are able to infer, using our scaling relation, that the planet responsible for the spiral structure in SAO 206462 has a mass of about 6 Jupiter masses.
Primary Subject
Source
Available from http://dx.doi.org/10.1088/2041-8205/815/2/L21; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
Astrophysical Journal Letters; ISSN 2041-8205;
; v. 815(2); [7 p.]

Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue