Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.015 seconds
Beffara, V; Duminil-Copin, H; Smirnov, S, E-mail: Vincent.Beffara@ens-lyon.fr, E-mail: hugo.duminil@unige.ch, E-mail: stanislav.smirnov@unige.ch2015
AbstractAbstract
[en] The critical surface for the random-cluster model with cluster-weight on isoradial graphs is identified using parafermionic observables. Correlations are also shown to decay exponentially fast in the subcritical regime. While this result is restricted to random-cluster models with it extends the recent theorem of (Beffara and Duminil-Copin 2012 Probl. Theory Relat. Fields 153 511–42) to a large class of planar graphs. In particular, the anisotropic random-cluster model on the square lattice is shown to be critical if where p v and p h denote the horizontal and vertical edge-weights respectively. We also mention consequences for Potts models. (paper)
Primary Subject
Source
Available from http://dx.doi.org/10.1088/1751-8113/48/48/484003; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
Journal of Physics. A, Mathematical and Theoretical (Online); ISSN 1751-8121;
; v. 48(48); [25 p.]

Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue