Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.015 seconds
Cho, Eun-Hyoung; Kim, Youngsung; Lee, Chang Seung; Hwang, Jinyoung; Lee, Jongmin; Park, Hyeon Cheol; Kwak, Chan; Woo, Yun Sung, E-mail: yswoo@kopo.ac.kr2019
AbstractAbstract
[en] Transparent conducting electrodes (TCEs) based on silver nanowire (AgNW) networks possess high conductance, transmittance, and mechanical flexibility. However, due to the relatively high diffuse reflection of incident light on AgNWs, they cannot be practically implemented in displays requiring low pattern visibility. One promising strategy for solving this problem is to place an optical stack with high refractive index underneath the AgNW layer. In this work, AgNW-RuO2 nanosheet hybrid TCEs with low diffuse reflections are fabricated using metallic RuO2 nanosheets as undercoats. As predicted by theoretical simulations, RuO2 nanosheets with high refractive indices reduce the diffuse reflections of AgNWs by almost 8%. Moreover, after the partial etching of AgNWs, the difference in the diffuse reflections of their etched and non-etched regions becomes equal to about 0.003, leading to the formation of an invisible pattern. The film consisting of micro-sized RuO2 nanosheets is not damaged during etching, but instead forms a current path between different AgNWs broken by cyclic bending, resulting in a tenfold decrease in the resistance of the AgNW TCE after 170 000 cycles. Further, RuO2 nanosheets suppress the diffusion of humid air from the outside, thus improving the environmental stability of the AgNW-RuO2 nanosheet hybrid TCEs. (paper)
Primary Subject
Source
Available from http://dx.doi.org/10.1088/1361-6528/aae56f; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
Nanotechnology (Print); ISSN 0957-4484;
; v. 30(1); [10 p.]

Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue