Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.023 seconds
AbstractAbstract
[en] A damage model is developed and validated with experimental data for the non-linear mechanical behavior of SiC/SiC composite materials in nuclear applications. The model extends a continuum damage mechanics formalism, where explicit property degradation and volumetric swelling as a result of neutron irradiation are additionally included. The model is shown to be validated with out-of-pile experiments, and then applied to off-normal and high-burnup operating conditions associated with loss of cooling and extended radiation exposure, respectively. Optimized operating conditions aimed at reducing the fuel temperature included variation of the thermal conductivity and initial fuel-cladding gap thermal resistance. The nonlinear response along with continuum micro-cracking damage predictions are obtained and compared to the behavior during normal operating conditions. Numerical implementation of the model is based on 3-D Finite Element solutions.
Primary Subject
Source
S002231151930282X; Available from http://dx.doi.org/10.1016/j.jnucmat.2019.07.017; © 2019 Elsevier B.V. All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue