Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.018 seconds
Benavente, David; Valdés-Abellán, Javier; Pla, Concepción; Sanz-Rubio, Enrique, E-mail: david.benavente@ua.es, E-mail: javier.valdes@ua.es, E-mail: c.pla@ua.es, E-mail: esanz@geomnia.es2019
AbstractAbstract
[en] Highlights: • Radon risk classification depends on the soil water content during the measurement. • Rosetta PTF estimate soil gas permeability from soil texture and water content. • The proposed methodology provides reliable gas permeability compared to field values. - Abstract: Radon is a natural source of radioactivity and it can be found in all soils and rocks in the Earth. The presence of radon gas in indoor environments implies a serious risk for human health, already listed as carcinogenic by the World Health Organization. The most relevant methods to infer the risk for radon exposure are based on soil radon concentration and gas permeability that describe the effective radon movement in the soil. However, they neglect crucial soil properties and water content in soil, which can affect greatly soil permeability to gases. Additionally, soil permeability measurement remains expensive, difficult and time-consuming. In this paper we show a new and simple methodology to infer radon risk based on Rosetta3 pedotransfer function as well as soil texture and water content. We also determine the influence of soil texture both on the gas permeability variation in dependence on water content and on the parameter n of the van Genuchten –Mualem model, which establishes the shape of the relative permeability curves. We show that radon risk exposure may change importantly for the same soil with different soil water contents. We finally apply and validate the proposed method using radon permeability data from the Canadian component of the North American Soil Geochemical Landscapes Project (NASGLP). Results highlight that the proposed methodology provides reliable estimations of the gas permeability and reveal that the presence of water content may cross the boundary between two radon risk categories, and consequently, may change the radon risk category to safer situations.
Primary Subject
Secondary Subject
Source
S0265931X19302097; Available from http://dx.doi.org/10.1016/j.jenvrad.2019.105992; © 2019 Elsevier Ltd. All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue