Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.015 seconds
Carmelo, J.M.P.; Prosen, T., E-mail: carmelo@fisica.uminho.pt2017
AbstractAbstract
[en] Whether in the thermodynamic limit, vanishing magnetic field , and nonzero temperature the spin stiffness of the spin-1/2 XXX Heisenberg chain is finite or vanishes within the grand-canonical ensemble remains an unsolved and controversial issue, as different approaches yield contradictory results. Here we provide an upper bound on the stiffness and show that within that ensemble it vanishes for in the thermodynamic limit of chain length , at high temperatures . Our approach uses a representation in terms of the L physical spins 1/2. For all configurations that generate the exact spin-S energy and momentum eigenstates such a configuration involves a number 2S of unpaired spins 1/2 in multiplet configurations and spins 1/2 that are paired within spin–singlet pairs. The Bethe-ansatz strings of length and describe a single unbound spin–singlet pair and a configuration within which n pairs are bound, respectively. In the case of pairs this holds both for ideal and deformed strings associated with n complex rapidities with the same real part. The use of such a spin 1/2 representation provides useful physical information on the problem under investigation in contrast to often less controllable numerical studies. Our results provide strong evidence for the absence of ballistic transport in the spin-1/2 XXX Heisenberg chain in the thermodynamic limit, for high temperatures , vanishing magnetic field and within the grand-canonical ensemble.
Secondary Subject
Source
S0550321316303492; Available from http://dx.doi.org/10.1016/j.nuclphysb.2016.10.021; © 2016 The Author(s). Published by Elsevier B.V.; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue