Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.024 seconds
Nogueira, A.A.; Pimentel, B.M.; Rabanal, L., E-mail: andsogueira@hotmail.com, E-mail: pimentel@ift.unesp.br, E-mail: lrabanal@ift.unesp.br2018
AbstractAbstract
[en] This work explores the quantum dynamics of the interaction between scalar (matter) and vectorial (intermediate) particles and studies their thermodynamic equilibrium in the grand-canonical ensemble. The aim of the article is to clarify the connection between the physical degrees of freedom of a theory in both the quantization process and the description of the thermodynamic equilibrium, in which we see an intimate connection between physical degrees of freedom, Gibbs free energy and the equipartition theorem. We have split the work into two sections. First, we analyze the quantum interaction in the context of the generalized scalar Duffin–Kemmer–Petiau quantum electrodynamics (GSDKP) by using the functional formalism. We build the Hamiltonian structure following the Dirac methodology, apply the Faddeev–Senjanovic procedure to obtain the transition amplitude in the generalized Coulomb gauge and, finally, use the Faddeev–Popov–DeWitt method to write the amplitude in covariant form in the no-mixing gauge. Subsequently, we exclusively use the Matsubara–Fradkin (MF) formalism in order to describe fields in thermodynamical equilibrium. The corresponding equations in thermodynamic equilibrium for the scalar, vectorial and ghost sectors are explicitly constructed from which the extraction of the partition function is straightforward. It is in the construction of the vectorial sector that the emergence and importance of the ghost fields are revealed: they eliminate the extra non-physical degrees of freedom of the vectorial sector thus maintaining the physical degrees of freedom.
Primary Subject
Source
S0550321318302116; Available from http://dx.doi.org/10.1016/j.nuclphysb.2018.07.024; © 2018 The Authors. Published by Elsevier B.V.; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue