Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.015 seconds
Parrish, Riley; Winston, Alexander; Harp, Jason; Aitkaliyeva, Assel, E-mail: aitkaliyeva@mse.ufl.edu2019
AbstractAbstract
[en] This work examines the radial evolution of a high burnup fast reactor mixed-oxide (MOX) fuel pellet irradiated at the Fast Flux Test Facility (FFTF) using scanning (SEM) and transmission electron microscopy (TEM). At 21.3% fissions per initial metal atoms (FIMA), the sample analyzed in this work is likely among the highest burnup oxide fuel samples ever evaluated using TEM. Initial SEM examination focused on the characterization of the fuel microstructure and solid fission product behavior as a function of radial position. The fuel pellet underwent extensive restructuring as demonstrated by columnar grain formation near the central void. Oxide fission product phases were confined to near the fuel centerline and decomposed from perovskite BaZrO3 to the fluorite ZrO2 type crystal structure. Metallic five metal precipitates (FMPs) were observed at all radial positions and the Pd-rich metallic phase increased in area fraction moving toward the pellet surface. TEM examination focused on the determination of dislocation density ranging from the fuel pellet center to the pellet surface. Dislocation density was highest in the cooler regions of the fuel pellet, with the outer edge experiencing grain refinement and high defect concentrations consistent with the rim structure. The results of the paper highlight the variable dislocation behavior as a function of radial position in high burnup MOX fuels, as well as describe the largely unexplored change in crystal structure of the oxide solid fission product phase.
Primary Subject
Source
S0022311519307329; Available from http://dx.doi.org/10.1016/j.jnucmat.2019.151794; © 2019 Elsevier B.V. All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
Country of publication
ALKALINE EARTH METAL COMPOUNDS, CHALCOGENIDES, CHEMICAL REACTIONS, CRYSTAL DEFECTS, CRYSTAL STRUCTURE, ELECTRON MICROSCOPY, ELEMENTS, ENERGY SOURCES, FUELS, HEAT EXCHANGERS, ISOTOPES, LINE DEFECTS, MATERIALS, MICROSCOPY, NUCLEAR FUELS, OXIDES, OXYGEN COMPOUNDS, PELLETS, RADIOACTIVE MATERIALS, REACTOR MATERIALS, SOLID FUELS, TRANSITION ELEMENT COMPOUNDS, ZIRCONIUM COMPOUNDS
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue