Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.015 seconds
Zamzamian, Seyed Mehrdad; Hossein Feghhi, Seyed Amir; Samadfam, Mohammad, E-mail: a.feghhi@gmail.com2019
AbstractAbstract
[en] Highlights: •MD simulations showed that the edge dislocation mobility is temperature-independent. •The damage cascade produced by energetic PKAs can cause to decrease the mobility. •The C–V complexes play a major rule in the movement of the dislocation. •The presence of dislocation has also effect on the number of point defects. •The number of point defects with the presence of the dislocation significantly increases. - Abstract: Molecular dynamics simulations were used to propose a closed-form expression for the mobility of the edge dislocation in low-carbon α-Fe (up to 0.1 at.% C) at temperatures of 300, 400 and 500 K and applied shear stresses of 10–100 MPa. Considering this parameter helps us to understand the effect of damage cascade on the dislocation mobility. The results confirmed that the point defect clusters at the thermal spike stage of the cascade (that they can be considered as an unstable precipitation-like phase), the distance of damage cascade relative to the center of the dislocation core and forming carbon-vacancy (C–V) complexes are some rather stronger obstacles for movement of the dislocation than isolated point defects. Then, the number of Frenkel pairs (either SIAs or vacancies) produced by different PKA energies in the case of with and without the presence of an immobile edge dislocation were also obtained and a mathematical expression was proposed. Surprisingly, we concluded that the presence of the dislocation considerably increases the number of point defects (on the picosecond time scale).
Primary Subject
Source
S0022311519305574; Available from http://dx.doi.org/10.1016/j.jnucmat.2019.151806; © 2019 Elsevier B.V. All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue