Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.019 seconds
AbstractAbstract
[en] Highlights: •High radiation tolerance of -Ti3Al is determined by its ordered crystal structure. •Primary damage in Ti3Al is compared with that in Ti-25at.%Al disordered solid solution. •Notable fraction of high radiation tolerance of Ti3Al is retained after disordering. •Other PKA energy dissipation mechanisms contribute to radiation tolerance of -Ti3Al. - Abstract: A molecular dynamics study of radiation damage created in collision cascades in D019 Ti3Al intermetallic compound and a Ti-Al binary disordered solid solution with the same chemical composition is carried out. Collision cascades are initiated by either Al or Ti primary knock-on atoms (PKA) with PKA energy 5 keV 20 keV in the two materials at temperature T ranging from 100 K to 900 K. A series of at least 32 different cascades for each (, T) set was simulated in order to imitate an isotropic spatial and random temporal distribution of PKAs, generate representative sampling and obtain statistically reliable quantitative results. The numbers of Frenkel pairs, and , formed in Ti3Al intermetallics and Ti-25at.%Al disordered solid solution, respectively, were averaged over collision cascades with the same (, T) and used to quantify the radiation resistance against primary damage formation. It is shown that the relationship is satisfied under all simulation conditions, i.e. D019 ordered crystal structure of Ti3Al intermetallics is an important feature affecting its radiation tolerance. Nevertheless, a relatively high resistance against the formation of primary radiation defects has been retained even after complete disordering of D019 Ti3Al, which points out to the existence of additional mechanisms governing its radiation tolerance.
Primary Subject
Source
S0022311518314156; Available from http://dx.doi.org/10.1016/j.jnucmat.2019.03.046; © 2019 Elsevier B.V. All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue