Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.017 seconds
Petit, Clémence; Maire, Eric; Meille, Sylvain; Adrien, Jérôme, E-mail: eric.maire@insa-lyon.fr2017
AbstractAbstract
[en] Highlights: • Iron-rich inclusions were identified in an aluminum foam in high-resolution images obtained with local tomography. • A tensile test followed by X-ray tomography showed that struts fracture mainly occurred in inclusions-rich regions. • The finite element model taking into account the inclusions was based on image processing of the high-resolution images. • The model with the inclusions resulted in local stress concentrations explaining the early fracture of some struts. An aluminum foam can be characterized by its architecture and by the solid phase’ microstructure. Our aim is to link the foam's morphological and microstructural features with its mechanical properties thanks to X-ray tomography and finite element (FE). An approach combining X-ray tomography at different resolutions, image processing, and FE modeling was developed to take into account the influence of the intermetallics on the foam's fracture. First, the samples were scanned with “local” tomography, where the specimen is placed close to the X-ray source. These images allowed for observing intermetallics. Then an in situ tensile test was performed in the tomograph to follow the sample's deformation at low resolution. The images obtained from local tomography were processed to create one low-resolution image of the initial sample including details from high resolution. This was done by a series of thresholding and scaling of the high-resolution images. This image was used to generate a FE mesh. A FE input file was obtained thanks to Java programs associating the elements to the phases. At the local scale, the calculated stress distribution and the images of the struts were analysed. Our work confirms that the presence of inclusions can explain the fracture of struts.
Primary Subject
Source
S0264127517301375; Available from http://dx.doi.org/10.1016/j.matdes.2017.02.009; Copyright (c) 2017 Elsevier Ltd. All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
Materials and Design; ISSN 0264-1275;
; v. 120; p. 117-127

Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue