Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.015 seconds
AbstractAbstract
[en] Highlights: • The mass sensitivities and resolutions of CNTs with length ranging from 200 nm to 40 nm are reported. • A nonlocal model fits the dispersions of CNTs is used to identify CNTs Young’s modulus to be 358.1 GPa. • Ultrahigh frequency of 8.35 GHz, ultrahigh sensitivity of 6.3 yg, and enhanced resolution of 0.5 yg are detected for CNTs. • CNTs-based atomic mass sensors for B, Ca, C, Cr, Li, Mg, Si, Ti, and Zr atoms are designed. The attitude of the science of mass sensors is to design highly mass sensitive nano-devices along with nano-devices that can operate at distinct sensitivity and resolution levels. Because they can achieve very high frequency shifts when very small masses are added to their surfaces, carbon nanotubes (CNTs) are considered as the most promising material candidate that can be used in designing mass sensors. To design and recommend a CNT for specific sensitivity and resolution levels, experimental trials are usually utilized. This motivated us to report the sensitivities and resolutions of CNTs-based resonators for mass sensing applications. An accurate mathematical model is proposed with considering the atomic packing and the lattice dynamics of CNTs. In the context of this model, the elastic properties of CNTs are obtained accounting for their phonon dispersions. The derived model is then used to report the sensitivities and resolutions of CNTs as functions of the CNT length and diameter. Recommended dimensions for CNTs with resolutions equal to the atomic mass of elements including B, Ca, C, Cr, Li, Mg, Si, Ti, and Zr are also determined. The performed analyses provide the necessary guidelines to design efficient mass sensors and mechanical mass spectrometers with different sensitivity and resolution levels.
Primary Subject
Source
S0264127516315064; Available from http://dx.doi.org/10.1016/j.matdes.2016.11.104; Copyright (c) 2016 Elsevier Ltd. All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
Materials and Design; ISSN 0264-1275;
; v. 114; p. 591-598

Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue