Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.022 seconds
AbstractAbstract
[en] Highlights: • The evolution of electronic transport properties of ZGNRs under applying different vertical strain. • The localized state breaks the current suppression of symmetric zigzag graphene nanoribbons. • The current suppression appears with related to the magnitude and location of the localized vertical strain. Using density functional theory combined with nonequilibrium Green’s function formalism, we investigate the transport properties of zigzag graphene nanoribbons (ZGNRs) under vertical strain. Our calculations show that localized state induced by vertical strain will inhibit the electronic transport of the systems at zero bias, but at nonzero bias, the localized state can enhance the electronic transport behavior if ZGNRs are symmetry with respect to the mid-plane between two edges. This is because the localized state produces an asymmetry electron density distribution which break the current suppression. These findings may be useful for the application of strain-induced ZGNR based molecular devices.
Primary Subject
Secondary Subject
Source
S0009261416310272; Available from http://dx.doi.org/10.1016/j.cplett.2016.12.063; Copyright (c) 2017 Elsevier B.V. All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue