Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.015 seconds
Ebrahimi, Farzad; Dabbagh, Ali, E-mail: febrahimy@eng.ikiu.ac.ir2019
AbstractAbstract
[en] The important effect of porosity on the mechanical behaviors of a continuum, makes it necessary to be accounted for while analyzing the structure. Motivated by this fact, a new porosity-dependent homogenization scheme is presented in this article to investigate the wave propagation responses of functionally graded (FG) nanobeams by considering the coupling effects between density and Young’s moduli in porous materials. In the introduced homogenization method, which is a modified form of the power-law model, dependency of effective Young’s modulus to the mass density is covered. Based on the Hamilton principle, the Navier equations are developed using the Euler-Bernoulli beam model. Thereafter, the constitutive equations are obtained employing the nonlocal elasticity theory of Eringen. Next, the governing equations are solved in order to reach the wave frequency. Once the validity of presented methodology is proved, a set of parametric studies are adopted to emphasize the role of each variant on the wave dispersion behaviors of porous FG nanobeams.
Primary Subject
Source
Copyright (c) 2019 Societa Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
European Physical Journal Plus; ISSN 2190-5444;
; v. 134(4); p. 1-8

Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue