Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.018 seconds
AbstractAbstract
[en] The microstructures and tensile properties at both room and elevated temperatures for both the as-cast and as-aged Mg-5Al-5Ca (AX55) alloy with 0–2 wt% Sn addition were studied. The results indicate that the α-Mg dendrite is gradually refined and the interdendritic Al2Ca and Mg2Ca intermetallics become more connected with Sn addition. The as-cast AX55-1Sn alloy shows optimal ultimate tensile strength (UTS) at testing temperature from 25 to 225 °C. After T61 and T62 heat treatment, the eutectic-lamellar microstructure of the as-cast alloys tends to be spheroidized and distributed uniformly along the grain boundaries. While the alloys with higher Sn content show higher density of granulated and needle-shaped Al2Ca phases precipitated into α-Mg matrix, which results in the increase of UTS, yield strength (YS), elongation and microhardness with Sn addition. The morphology of CaMgSn phase can be improved by T62 treatment, which makes as-aged AX55-2.0Sn alloy exhibit a smaller decrease rate of the UTS at temperature up to 225 °C. The heat resistance of different heat-resistant magnesium alloys were compared and discussed by using the decrease rate of the UTS. (paper)
Primary Subject
Source
Available from http://dx.doi.org/10.1088/2053-1591/aabc38; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
Materials Research Express (Online); ISSN 2053-1591;
; v. 5(4); [12 p.]

Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue