Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.014 seconds
AbstractAbstract
[en] Highlights: • A new TE device of few-layer graphene with intercalated Au nanoparticles. • The ueage of Au nanoparticles enhances the cross-plane electrical conductivity. • The figure of merit ZT is estimated as 1 at room temperature. • The polarity of output voltage is determined by the carrier polarity of the substrate. • The device concept is applicable to a flexible and transparent substrate. Monolayer graphene exhibits impressive in-plane thermal conductivity (> 1000 W m–1 K–1). However, the out-of-plane thermal transport is limited due to the weak van der Waals interaction, indicating the possibility of constructing a vertical thermoelectric (TE) device. Here, we propose a cross-plane TE device based on the vertical heterostructures of few-layer graphene and gold nanoparticles (AuNPs) on Si substrates, where the incorporation of AuNPs further inhibits the phonon transport and enhances the electrical conductivity along vertical direction. A measurable Seebeck voltage is produced vertically between top graphene and bottom Si when the device is put on a hot surface and the figure of merit ZT is estimated as 1 at room temperature from the transient Harman method. The polarity of the output voltage is determined by the carrier polarity of the substrate. The device concept is also applicable to a flexible and transparent substrate as demonstrated.
Primary Subject
Secondary Subject
Source
S2211285517303579; Available from http://dx.doi.org/10.1016/j.nanoen.2017.06.004; Copyright (c) 2017 Elsevier Ltd. All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
Nano Energy (Print); ISSN 2211-2855;
; v. 38; p. 385-391

Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue