Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.019 seconds
Jin, Jun; Wang, Chao; Ren, Xiao-Ning; Huang, Shao-Zhuan; Wu, Min; Chen, Li-Hua; Hasan, Tawfique; Wang, Bin-Jie; Li, Yu; Su, Bao-Lian, E-mail: yu.li@whut.edu.cn, E-mail: baoliansu@whut.edu.cn2017
AbstractAbstract
[en] Highlights: • An alkali modification process produces highly dispersed ultrafine Pt nanoclusters. • Ultrafine Pt nanoclusters have metallic Pt0 and oxidized Pt2+ species. • NYTiO2 as a model photocatalyst for H2 production. • NYTiO2-Pt with Pt0 and Pt2+ species as light harvesting reactor for efficient H2 production. We demonstrate an alkali modification process to produce highly dispersed ultrafine Pt nanoclusters with metallic Pt0 and oxidized Pt2+ species as co-catalyst anchored on nanosheet-constructed yolk-shell TiO2 (NYTiO2-Pt) acting as light harvesting reactor for highly efficient photocatalytic H2 production. Benefiting from the high surface area, highly dispersed ultrafine Pt nanoclusters (~0.6 nm) with Pt0 and Pt2+ species and special nanosheet-constructed yolk-shell structure, this novel light harvesting reactor exhibits excellent performance for photocatalytic H2 production. The NYTiO2-Pt-0.5 (0.188 wt% Pt) demonstrates an unprecedentedly high H2 evolution rate of 20.88 mmol h−1 g−1 with excellent photocatalytic stability, which is 87 times than that of NYTiO2-Pt-3.0 (0.24 mmol h−1 g−1, 1.88 wt% Pt), and also much higher than those of other TiO2 nanostructures with the same Pt content. Such H2 evolution rate is the highest reported for photocatalytic H2 production with such a low Pt content under simulated solar light. Our strategy here suggests that via alkali modifying the photocatalysts, we can not only enhance the H2 production for solar energy conversion but also significantly decrease the noble metal content for cost saving.
Primary Subject
Source
S2211285517302963; Available from http://dx.doi.org/10.1016/j.nanoen.2017.05.025; Copyright (c) 2017 Elsevier Ltd. All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
Nano Energy (Print); ISSN 2211-2855;
; v. 38; p. 118-126

Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue