Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.015 seconds
Cao, Ke; Li, Peifeng; Zhang, Yizhi; Chen, Tianwu; Wang, Xu; Zhang, Sulin; Liu, Jiabin; Wang, Hongtao, E-mail: peifengli@zju.edu.cn, E-mail: liujiabin@zju.edu.cn, E-mail: htw@zju.edu.cn2017
AbstractAbstract
[en] Highlights: • The [email protected] yolk-shell NPs can bear hundreds of cycles with ultrafast reversible lithiation-delithiation without rupture. • Finite element analysis demonstrates that the yolk-shell structure improves the chemomechanical durability of the [email protected] NPs. • The constraint effects of C coating on Sn core were investigated by TEM and front-tracking finite element analysis. Surface coating has become an effective method to stabilize solid-electrolyte interphase (SEI), extend the cycle life, and improve rate performance of anode materials for lithium ion batteries (LIBs). However, owing to the incompatible volumetric changes between the core and the shell, core-shell structures with fully filled active materials are prone to fracture upon electrochemical cycling, leading to fast capacity fading. Here, we synthesize partially filled [email protected] yolk-shell nanoparticles (NPs) by chemical vapor deposition (CVD) as anode materials for LIBs. Our in situ transmission electron microscope (TEM) studies demonstrate that the yolk-shell NPs can lithiate and delithiate hundreds of cycles with ultrafast (2 s per cycle) reversible cycling without rupture. Front-tracking finite element analysis of the coupled chemical reaction, diffusion, and stress generation upon lithiation reveals improved chemomechanical durability of the yolk-shell NPs, in comparison to naked SnNPs and fully filled [email protected] core-shell NPs. Our results provide rational guidance to the development and optimization of yolk-shell NPs as high-performance anode materials for LIBs.
Primary Subject
Secondary Subject
Source
S221128551730455X; Available from http://dx.doi.org/10.1016/j.nanoen.2017.07.042; Copyright (c) 2017 Elsevier Ltd. All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
Nano Energy (Print); ISSN 2211-2855;
; v. 40; p. 187-194

Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue