Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.016 seconds
Dong, Y. Y.; Han, Y. W.; Zhang, Z. J., E-mail: yang_yang_dong@hotmail.com, E-mail: zj.zhang@nuaa.edu.cn2019
AbstractAbstract
[en] An archetypal isolation system with rational restoring force and fractional damping is proposed and investigated based on the nonlinear mechanism of geometric kinematics. The equations of motion of this nonlinear isolator subject to nonlinear damping and external excitation are derived based on the Lagrange equation. For the free vibration system, the nonlinear irrational restoring force, nonlinear stiffness behaviors, and fractional damping are investigated to show the complex transitions of multi-stability. For the forced vibration system, the analytical expressions of force transmissibility of the nonlinear isolator with single-well potential under the perturbation of viscous damping and harmonic forcing are formulated by applying the harmonic balance method. The shock response spectra of the perturbed system subject to half-sine input are evaluated by the maximum responses. The Melnikov analysis and empirical method are employed to determine the analytical criteria of chaotic thresholds for the homoclinic orbit of the perturbed system with symmetric double-well characteristics. The numerical simulations are carried out to demonstrate periodic solutions, periodic doubling bifurcation, and chaotic solutions. The maximum displacements have been obtained to show the isolation characteristics in the case of chaotic vibration.
Primary Subject
Source
Copyright (c) 2019 Springer-Verlag GmbH Austria, part of Springer Nature; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue