Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.022 seconds
Chang, Zhi-yu; Wang, Ping; Zhang, Jian-liang; Jiao, Ke-xin; Zhang, Yue-qiang; Liu, Zheng-jian, E-mail: wangping63629@163.com, E-mail: liuzhengjian@126.com2018
AbstractAbstract
[en] To more comprehensively analyze the effect of CO2 and H2O on the gasification dissolution reaction and deep reaction of coke, the reactions of coke with CO2 and H2O using high temperature gas–solid reaction apparatus over the range of 950–1250°C were studied, and the thermodynamic and kinetic analyses were also performed. The results show that the average reaction rate of coke with H2O is about 1.3–6.5 times that with CO2 in the experimental temperature range. At the same temperature, the endothermic effect of coke with H2O is less than that with CO2. As the pressure increases, the gasification dissolution reaction of coke shifts to the high-temperature zone. The use of hydrogen- rich fuels is conducive to decreasing the energy consumed inside the blast furnace, and a corresponding high-pressure operation will help to suppress the gasification dissolution reaction of coke and reduce its deterioration. The interfacial chemical reaction is the main rate-limiting step over the experimental temperature range. The activation energies of the reaction of coke with CO2 and H2O are 169.23 kJ·mol−1 and 87.13 kJ·mol−1, respectively. Additionally, water vapor is more likely to diffuse into the coke interior at a lower temperature and thus aggravates the deterioration of coke in the middle upper part of blast furnace.
Primary Subject
Source
Copyright (c) 2018 University of Science and Technology Beijing and Springer-Verlag GmbH Germany, part of Springer Nature; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
International Journal of Minerals, Metallurgy and Materials (Online); ISSN 1869-103X;
; v. 25(12); p. 1402-1411

Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue