Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.017 seconds
AbstractAbstract
[en] The aim of the present study was to investigate the effect of element segregation on the microstructure and γ′ phase in a γ/γ′ cobalt- based superalloy. Several samples were prepared from a cast alloy and homogenized at 1300°C for different times, with a maximum of 24 h. A microstructural study of the cast alloy using wavelength-dispersive spectroscopic analysis revealed that elements such as Al, Ti, and Ni segregated mostly within interdendritic regions, whereas W atoms were segregated within dendrite cores. With an increase in homogenization time, segregation decreased and the initial dendritic structure was eliminated. Field-emission scanning electron microscopy micrographs showed that the γ′ phases in the cores and interdendritic regions of the as-cast alloy were 392 and 124 nm, respectively. The size difference of γ′ was found to be due to the different segregation behaviors of constituent elements during solidification. After homogenization, particularly after 16 h, segregation decreased; thus, the size, chemical composition, and hardness of the precipitated γ′ phase was mostly uniform throughout the samples.
Primary Subject
Source
Copyright (c) 2019 University of Science and Technology Beijing and Springer-Verlag GmbH Germany, part of Springer Nature; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
International Journal of Minerals, Metallurgy and Materials (Online); ISSN 1869-103X;
; v. 26(2); p. 222-233

Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue