Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.018 seconds
AbstractAbstract
[en] In inertial confinement fusion, ignition conditions of the thermonuclear deuterium-tritium fusion reactions depend on the electron thermal heat conduction that affects the hot-spot mass accretion and energy balance. One-dimensional hydrodynamic calculations have been performed to simulate the implosion of a capsule directly irradiated by laser beams. For these calculations, the laser-capsule configuration has been scaled using homothetic transformations to scan the transition to ignition while keeping the implosion velocity constant. The electronic heat conduction has been modified by two alternative ways: 1) the classical Spitzer heat flux has been harmonically limited to the free streaming limit using a flux limit factor φ, and 2) the classical Spitzer coefficient is reduced by a multiplicative factor α < 1. A change of the thermal conductivity affects the performances of the implosion and it can be beneficial or harmful. Parametric studies have been performed for both alternatives, looking for the kinetic energy threshold that generates a unitary energy gain as a function of parameters φ or α, respectively. These studies show how the energy threshold is modified by acting on the heat flux and that there is a minimum ignition energy that can be tuned by appropriately reducing the heat conduction. A simple qualitative model is developed to understand the relation between energy threshold and heat conduction. (authors)
Primary Subject
Secondary Subject
Source
Available from doi: http://dx.doi.org/10.1140/epjd/e2018-90475-1; 19 refs.; This record replaces 50058629
Record Type
Journal Article
Journal
European Physical Journal. D, Atomic, Molecular and Optical Physics; ISSN 1434-6060;
; v. 73(no.1); p. 5.1-5.5

Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue