Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.018 seconds
Fu, Matthew K.; Fan, Yuyang; Hultmark, Marcus, E-mail: mkfu@princeton.edu, E-mail: yuyang@tendo.tech, E-mail: hultmark@princeton.edu2019
AbstractAbstract
[en] A nano-sized crossed thermal anemometer (X-NSTAP) was developed and validated for measurements of two-components of velocity at high Reynolds numbers. The new sensor design is based on the single-component nanoscale thermal anemometry probe (NSTAP) previously used to acquire streamwise velocity measurements at high Reynolds numbers. The new sensor can, simultaneously, measure two components of velocity with a spatial resolution of , an order of magnitude smaller in each dimension than conventional cross-wires. The new X-NSTAP design features several structural and manufacturing modifications to improve the aerodynamic performance of the sensor compared to previous nanoscale cross-wire designs. The effects of different manufacturing modifications were evaluated using dye visualizations over scale models of the sensor tip. The pitch sensitivity of the final sensor design was evaluated in an open-loop wind-tunnel and was comparable to the single-component NSTAP design. The X-NSTAP was then deployed in the Princeton Superpipe to acquire axial and radial velocity measurements up to friction Reynolds numbers, with good agreement to existing studies. Graphical abstract: .
Primary Subject
Secondary Subject
Source
Copyright (c) 2019 Springer-Verlag GmbH Germany, part of Springer Nature; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue