Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.018 seconds
Bily, T.; Sklenka, L.; Fejt, F.; Putley, D.; Albrighton, J.; Vyshniauskas, J.; Piwowar, S.
Nuclear Energy Agency - NEA, 46 quai Alphonse Le Gallo, 92100 Boulogne-Billancourt (France); Institut de Radioprotection et de Surete Nucleaire - IRSN, 31 avenue de la Division Leclerc, 92260 Fontenay-aux-Roses (France)2019
Nuclear Energy Agency - NEA, 46 quai Alphonse Le Gallo, 92100 Boulogne-Billancourt (France); Institut de Radioprotection et de Surete Nucleaire - IRSN, 31 avenue de la Division Leclerc, 92260 Fontenay-aux-Roses (France)2019
AbstractAbstract
[en] Calculation tools for fuel transport criticality safety have to be validated against comprehensive sets of experimental data. One of the aspects is the validation of code ability to predict the reactivity changes with temperature. Unfortunately, in the temperature range of interest for normal operations, i.e. between -40 and +38 Celsius degrees, there is a shortage of available experimental data. At the VR-1 zero power reactor, as operated by the Czech Technical University in Prague, temperature reactivity experiments were established in 2011. These were originally for the purpose of education and training. Over time, the understanding of experimental conditions and uncertainties in the VR-1 has been improved along with associated modeling tools and analytical methods. In 2017, there was an interest in the VR-1 experimental data from the UK, to support the validation of the MONK criticality safety code for temperature-dependent calculations. From this interest, further work has been carried out to support the applicability of the data for such a purpose and to make these data available to the criticality safety community. Also, from subsequent interactions, priorities for future deployment of temperature-reactivity experiments at the VR-1 reactor were outlined to reduce the gaps in criticality safety temperature-dependent experimental data. This paper summarizes the history and present status of temperature-reactivity experiments at the VR-1 reactor and related calculation efforts. Finally, the outlook for proposed future experiments is given. (authors)
Primary Subject
Source
2019; 10 p; ICNC 2019: 11. international conference on nuclear criticality safety; Paris (France); 15-20 Sep 2019; 13 refs.; Available from the INIS Liaison Officer for France, see the INIS website for current contact and E-mail addresses
Record Type
Miscellaneous
Literature Type
Conference
Report Number
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue