Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.014 seconds
AbstractAbstract
[en] We present a novel microplasma flow reactor using a dielectric barrier discharge (DBD) driven by repetitive nanosecond high-voltage pulses. Our DBD-based geometry can generate a non-thermal plasma discharge at atmospheric pressure and below in a regular pattern of micro-channels. This reactor can work continuously up to about 100 min in air, depending on the pulse repetition rate and operating pressure. We here present the geometry and main characteristics of the reactor. Pulse energies of 1.46 and 1.3 μJ per channel at atmospheric pressure and 50 mbar, respectively, have been determined by time-resolved measurements of current and voltage. Time-resolved optical emission spectroscopy measurements have been performed to calculate the relative species concentrations and temperatures (vibrational and rotational) of the discharge. The effects of the operating pressure and flow velocity on the discharge intensity have been investigated. In addition, the effective reduced electric field strength has been obtained from the intensity ratio of vibronic emission bands of molecular nitrogen at different operating pressures and different locations. The derived increases gradually from about 550 to 4600 Td when decreasing the pressure from 1 bar to 100 mbar. Below 100 mbar, further pressure reduction results in a significant increase in up to about 10000 Td at 50 mbar. (paper)
Primary Subject
Source
Available from http://dx.doi.org/10.1088/1361-6595/aabf49; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
Plasma Sources Science and Technology; ISSN 0963-0252;
; v. 27(5); [13 p.]

Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue