Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.014 seconds
AbstractAbstract
[en] We investigate strong exciton-plasmon coupling and plasmon-mediated hybridization between the Frenkel (F) and Wannier–Mott (WM) excitons of an organic-inorganic hybrid system consisting of a silver ring separated from a monolayer WS 2 by J-aggregates. The extinction spectra of the hybrid system calculated by employing the coupled oscillator model are consistent with the results simulated by the finite-difference time-domain method. The calculation results show that strong couplings among F excitons, WM excitons, and localized surface plasmon resonances (LSPRs) lead to the appearance of three plexciton branches in the extinction spectra. The weighting efficiencies of the F exciton, WM exciton and LSPR modes in three plexciton branches are used to analyze the exciton-polaritons in the system. Furthermore, the strong coupling between two different excitons and LSPRs is manipulated by tuning F or WM exciton resonances. (paper)
Primary Subject
Source
Available from http://dx.doi.org/10.1088/0256-307X/36/10/107301; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue