Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.018 seconds
Ozdemir, I; Kadioglu, Y; Aktürk, E; Üzengi Aktürk, O; Yuksel, Y; Akıncı, Ü, E-mail: ethem.akturk@adu.edu.tr2019
AbstractAbstract
[en] In this manuscript, we have carried out a combined study of density functional theory and Monte Carlo (MC) simulations for a thorough examination of a single-layer (SL) Ti2B structure. On the basis of first-principles, spin-polarized density functional calculations, we showed that a free standing SL-Ti2B structure is dynamically and thermally stable. The atomic structure, phonon spectrum, electronic and magnetic properties of the SL-Ti2B structure are analyzed. In order to determine ground state, the structure of Ti2B is optimized for four types of spin oriented configurations, namely ferromagnetic (FM), antiferromagnetic Néel, antiferromagnetic Zigzag and antiferromagnetic Stripy and non-magnetic states. We found that the spin configuration FM corresponds to the ground state for SL-Ti2B. We also found that the Raman-active modes are softening in the antiferromagnetic cases. On the basis of these results, MC simulations show that the magnetic susceptibility, thermal variations of magnetization, and specific heat curves of Ti2B exhibit a phase transition between paramagnetic and FM phases at the Curie temperature of 39.06 K. While SL-Ti2B possess a little out-of-plane magnetic anisotropy, it has not any in plane magnetic anisotropy energy. (paper)
Source
Available from http://dx.doi.org/10.1088/1361-648X/ab3d1d; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue