Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.016 seconds
Li, Huan; Zhong, Yin; Luo, Hong-Gang; Liu, Yu; Song, Hai-Feng, E-mail: lihuan@glut.edu.cn, E-mail: song_haifeng@iapcm.ac.cn2018
AbstractAbstract
[en] Antiferromagnetic topological insulator (AFTI) is a topological matter that breaks time-reversal symmetry. Since its proposal, explorations of AFTI in strong-correlated systems are still lacking. In this paper, we show for the first time that a novel AFTI phase can be realized in three-dimensional topological Kondo insulator (TKI). In a wide parameter region, the ground states of TKI undergo a second-order transition to antiferromagnetic insulating phases which conserve a combined symmetry of time reversal and a lattice translation, allowing us to derive a -classification formula for these states. By calculating the index, the antiferromagnetic insulating states are classified into AFTI or non-topological antiferromagnetic insulator (nAFI) in different parameter regions. On the antiferromagnetic surfaces in AFTI, we find topologically protected gapless Dirac cones inside the bulk gap, leading to metallic Fermi rings exhibiting helical spin texture with weak spin-momentum locking. Depending on model parameters, the magnetic transitions take place either between AFTI and strong topological insulator, or between nAFI and weak topological insulator. By varying some model parameters, we find a topological transition between AFTI and nAFI, driving by closing of bulk gap. Our work may account for the pressure-induced magnetism in TKI compound SmB6, and helps to explore richer AFTI phases in heavy-fermion systems as well as in other strong-correlated systems. (paper)
Source
Available from http://dx.doi.org/10.1088/1361-648X/aae17b; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue