Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.017 seconds
Tsukamoto, Shigeru; Caciuc, Vasile; Atodiresei, Nicolae; Blügel, Stefan, E-mail: s.tsukamoto@fz-juelich.de, E-mail: n.atodiresei@fz-juelich.de2020
AbstractAbstract
[en] In this study, we investigate the electron transport properties of a B-doped armchair graphene nanoribbon (AGNR) suspended between graphene electrodes based on first-principles calculations. Our calculations reveal that one of the electron transmission channels of a pristine AGNR junction is closed by the B-doping. We then proceed to explore the effect of the B-doping on the spin-polarized electron transport behavior of a Fe-functionalized AGNR junction. As a result, transmission channels for majority-spin electrons are closed and the spin polarization of the electron transmission is enhanced from 0.60 for the Fe-functionalized AGNR junction to 0.96 for the B- and Fe-codoped one. This observation implies that the codoped AGNR junction can be employed as a spin filter. In addition, we investigate the electronic nature of the transmission suppression caused by the B-doping. A detailed analysis of the scattering wave functions clarifies that a mode modulation of an incident wave arises in the B-doped AGNR part and the incident wave connects to an evanescent wave in the transmission-side electrode. For pristine and Fe-functionalized AGNR junctions, such a mode modulation is not observed and the incident wave connects to a propagating wave in the transmission-side electrode. Tuning of electron transport property by exploiting such a mode modulation is one of promising techniques for designing functionality of spintronics devices. We also discuss the general correspondence between the electron transmission spectrum and the density of states of a junction. (paper)
Primary Subject
Secondary Subject
Source
Available from http://dx.doi.org/10.1088/1367-2630/ab8cac; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
New Journal of Physics; ISSN 1367-2630;
; v. 22(6); [15 p.]

Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue