Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.019 seconds
Cremer, J; Plankensteiner, D; Moreno-Cardoner, M; Ostermann, L; Ritsch, H, E-mail: david.plankensteiner@uibk.ac.at2020
AbstractAbstract
[en] Collective optical excitations in dipole-coupled nanorings of sub-wavelength spaced quantum emitters exhibit extreme sub-radiance and field confinement facilitating an efficient and low-loss ring-to-ring energy transfer. We show that energy shifts, radiative lifetimes, and emission patterns of excitons and biexcitons in such rings can be tailored via the orientation of the individual dipoles. Tilting the polarization from perpendicular to tangential to the ring dramatically changes the lifetime of the symmetric exciton state from superradiance to subradiance with the radiated field acquiring orbital angular momentum. At a magic tilt angle all excitons are degenerate and the transport fidelity between two rings exhibits a minimum. Further simulations suggest that, for certain parameters, the decay decreases double-exponentially with the emitter’s density. Disorder in the rings’ structure can even enhance radiative lifetimes. The transport efficiency strongly depends on polarization and size, which we demonstrate by simulating a bio-inspired example of two rings with 9 and 16 dipoles as found in biological light harvesting complexes (LHC). The field distribution in the most superradiant state in a full LHC multi-ring structure shows tight sub-wavelength field confinement in the central ring, while long-lived subradiant states store energy in the outer rings. (paper)
Primary Subject
Source
Available from http://dx.doi.org/10.1088/1367-2630/aba4d4; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
New Journal of Physics; ISSN 1367-2630;
; v. 22(8); [15 p.]

Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue