Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.015 seconds
Homma, Yuki; Tokunaga, S.; Sakamoto, Y.; Hoshino, K.; Yamoto, S.; Asakura, N., E-mail: homma.yuki@qst.go.jp
Joint Special Design Team for Fusion DEMO2020
Joint Special Design Team for Fusion DEMO2020
AbstractAbstract
[en] A preceding study (Homma et al 2018 Contrib. Plasma Phys. 58 629–37) presented an advanced model for thermal force whose applicable condition is extended from collisional to relatively low collisional plasma. According to this extended model, the thermal force reduces when plasma collisionality decreases. In the present study, the extended thermal force model has been implemented into a SOL-divertor integrated simulation code SONIC, in order to study the impact on impurity transport in DEMO-relevant scrape-off layer (SOL) plasma, due to thermal force reduction. A set of test simulations has been carried out supposing a reference steady-state operation scenario of the Japanese DEMO fusion reactor concept (JA DEMO). The thermal force has reduced by as much as 20%–70%, reflecting relatively lower collisionality in DEMO SOL plasma. The simulation results have demonstrated that the introduction of the collisionality dependence of thermal force leads to as much as 20%–80% of effective decrease in impurity density and its content ratio widely over the SOL upstream area under the DEMO relevant condition. Compared to the case with the conventional thermal force model, relative change rate of impurity content at representative poloidal positions are as follows: low-field side (LFS) X-point −59%, poloidal top area −22%, HFS upstream area up to −80%, and no major impact around LFS upstream. (paper)
Primary Subject
Source
Available from http://dx.doi.org/10.1088/1741-4326/ab7537; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue