Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.023 seconds
AbstractAbstract
[en] The dark energy is one of the great mysteries of modern cosmology: it is an unknown component supposed to fill the whole universe and be responsible for the current acceleration of the expansion of our Universe. Its study is a major focus of my thesis: the way I choose to study and characterize this Dark Energy is based on the large-scale structure of the Universe through a probe called the integrated Sachs-Wolfe effect (iSW). This effect is theoretically detectable in the cosmic microwave background (CMB): this light, which originated in the early Universe (380,000 years after the Big Bang), travelled through large structures in the Universe (galaxies and clusters) before reaching us, all of them underlain by gravitational potentials. The acceleration of the expansion (and dark energy) has the effect of stretching and 'flattening' these potentials during the crossing of photons, which has the effect of providing some extra energy of these FDC photons, which will depend on the properties of the dark energy. The iSW effect has a direct but weak effect on the power spectrum of the temperature fluctuations of the FDC effect: it therefore requires the use of external data to be detectable. A conventional approach to this problem is to correlate the FDC with a tracer of the distribution of matter in the Universe (usually galaxy surveys), and therefore the underlying gravitational potential. This has been attempted numerous times with surveys covering a large range of wavelengths, the measured correlation has yet to give a definitive and unambiguous result on the detection of the iSW effect. This is mainly due to the shortcomings of current surveys that are not deep enough and/or have a too low sky coverage. A part of my thesis is devoted to the correlation of FDC with another diffuse background, namely the cosmological infrared background (CIB), which is composed of the integrated emission of the non-resolved distant galaxies. I was able to show that it is an excellent tracer of the gravitational potentials, being free from many of the shortcomings of current surveys. The results of this study shows that the levels of significance for the expected correlation CIB-CMB exceed those of current surveys, and compete with those predicted for the future generation of very large surveys to come (Pan-STARRS, LSST, Euclid). In the following, my thesis was then focused on the individual imprint of the largest structures in the Universe in the CMB by iSW effect. According to an article by Granett et al. (2008), the iSW effect was directly detected by a stacking approach of patches of the CMB at the positions of superstructures. However, the high measured amplitude of the effect seems to be at odds with predictions from the standard model of cosmology. My work on the subject was first involved revisiting this study with my own protocol, completed and associated with a variety of statistical tests to check the significance of these results. This point proved to be particularly difficult to assess and subject to possible selection bias. I extended the use of this detection method to other available catalogues of structures, more consequent and supposedly more sophisticated in their detection algorithms. The results from one of these new catalogues (Sutter et al., 2012) suggests the presence of a signal at scales and amplitude more consistent with the theory, but at more moderate levels of significance than the catalogue and Granett al. At the same time, being a member of the HFI Core Team of the Planck Collaboration, I also performed the same detection using data from the new satellite. The results of the stacking approach introduced a number of questions concerning the nature of the expected signal: this led me to actively work on a theoretical prediction of the iSW effect produced by the superstructures previously mentioned, through simulations based on general relativity and the Lematre-Tolman-Bondi metric. This allowed me to reproduce the structures of Granett et al. and predict the exact full theoretical iSW effect of these structures. This work showed that the central amplitude of the measured signal is consistent with the LCDM theory, but the measured signal shows non-reproducible features that are not compatible with my predictions. An extension of my framework to the additional catalogues that I considered will verify the significance of their associated signals and their compatibility with the theory. Another part of my thesis focuses on a distant time in the history of the Universe, called reionization: the transition from a neutral universe to a fully ionised one under the action of the first stars and other ionising sources. This period has a significant influence on the CMB and its statistical properties, in particular the power spectrum of its polarisation fluctuations. In my case, I focused on the use of temperature measurements of the intergalactic medium during the reionization in order to investigate the possible contribution of the disintegration and annihilation of the hypothetical dark matter. Starting from a theoretical work based on several models of dark matter, I computed and compared predictions to actual measures of the IGM temperature, which allowed me to extract new and interesting constraints on the critical parameters of the dark matter and crucial features of the reionization itself. (author)
[fr]
L'energie sombre est l'un des grands mysteres de la cosmologie moderne, responsable de l'actuelle acceleration de l'expansion de notre Univers. Son etude est un des axes principaux de ma these: une des voies que j'exploite s'appuie sur la structuration de l'Univers a grande echelle a travers un effet observationnel appele effet Sachs-Wolfe integre (iSW). Cet effet est theoriquement detectable dans le fond diffus cosmologique (FDC): avant de nous parvenir cette lumiere traverse un grand nombre grandes structures sous-tendues par des potentiels gravitationnels. L'acceleration de l'expansion etire et aplatit ces potentiels pendant le passage des photons du FDC, modifiant leur energie d'une facon dependante des caracteristiques de l'energie sombre. L'effet iSW n'a qu'un effet tenu sur le FDC, obligeant l'utilisation de donnees externes pour le detecter. Une approche classique consiste a correler le FDC avec un traceur de la distribution de la matiere, et donc des potentiels sous-jacents. Maintes fois tentee avec des releves de galaxies, cette correlation n'a pas donne a l'heure actuelle de resultat definitif sur la detection de l'effet iSW, la faute a des releves pas assez profonds et/ou avec une couverture trop faible. Un partie de ma these est dediee a la correlation du FDC avec un autre fond 'diffus': le fond diffus infrarouge (FDI), qui est constitue de l'emission integree des galaxies lointaines non-resolues. J'ai pu montrer qu'il represente un excellent traceur, exempt des defauts des releves actuels. Les niveaux de signifiance attendus pour la correlation CIB-CMB excedent ceux des releves actuels, et rivalisent avec ceux predits pour la futur generation de tres grands releves. Dans la suite, ma these a porte sur l'empreinte individuelle sur le FDC des plus grandes structures par effet iSW. Mon travail sur le sujet a d'abord consiste a revisiter une etude precedente d'empilement de vignettes de FDC a la position de structures, avec mes propres protocole de mesure et tests statistiques pour verifier la signifiance de ces resultats, delicate a evaluer et sujette a de possibles biais de selection. J'ai poursuivi en appliquant cette meme methode de detection a d'autres catalogues de structures disponibles, beaucoup plus consequents et supposement plus raffines dans leur algorithme de detection. Les resultats pour un d'eux suggere la presence d'un signal a des echelles et amplitudes compatible avec la theorie, mais a des niveaux moderes de signifiance. Ces resultats empilements font s'interroger concernant le signal attendu: cela m'a amene a travailler sur une prediction theorique de l'iSW engendre par des structures, par des simulations basees sur la metrique de Lemaitre-Tolman-Bondi. Cela m'a permis de predire l'effet iSW theorique exact de structures existantes: l'amplitude centrale des signaux mesures est compatible avec la theorie, mais presente des caracteristiques non-reproductibles par ces memes predictions. Une extension aux catalogues etendus permettra de verifier la signifiance de leurs signaux et leur compatibilite avec la theorie. Un dernier pan de ma these porte sur une epoque de l'histoire de l'Univers appelee reionisation: son passage d'un etat neutre a ionise par l'arrivee des premieres etoiles et autres sources ionisantes. Cette periode a une influence importante sur le FDC et ses proprietes statistiques, en particulier sur son spectre de puissance des fluctuations de polarisation. Dans mon cas, je me suis penche sur l'utilisation des mesures de temperatures du milieu intergalactique, afin d'etudier la contribution possible de la desintegration et annihilation de l'hypothetique matiere sombre. A partir d'un travail theorique sur plusieurs modeles et leur comparaison aux observations de temperature, j'ai pu extraire des contraintes interessantes et inedites sur les parametres cruciaux de la matiere sombre et des caracteristiques cruciales de la reionisation elle-meme. (auteur)Original Title
La structuration de l'Univers a grande echelle. Une fenetre sur ses composantes sombres
Primary Subject
Source
23 Oct 2013; 223 p; [180 refs.]; Available from the INIS Liaison Officer for France, see the INIS website for current contact and E-mail addresses; These de doctorat, Discipline: Cosmologie
Record Type
Miscellaneous
Literature Type
Thesis/Dissertation
Report Number
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue