Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.023 seconds
AbstractAbstract
[en] When permanent magnets are surrounded by ferromagnetic materials, the magnetic field lines are rerouted in the air gap between them, which provides an approach for the optimum design of the eddy current damper. To improve the conventional tubular eddy current damper design, an enhanced eddy current damper with a ferromagnetic shaft and a ferromagnetic layer is successfully developed in this study. It is passive, cost-efficient and reliable, significantly boosting the damping effect without occupying extra space. To explore the benefits of the ferromagnetic material, analytical models of the magnetic field distributions are derived to estimate the damping coefficient. In addition, the ferromagnetic material configuration and dimensions of the proposed eddy current damper are optimized for better vibration suppression. The experiment results agree reasonably well with the theoretical models and finite element predictions, and demonstrate the effectiveness and efficiency of this innovative design, which realizes a remarkable improvement in the damping coefficient, from 70.5 N · s m−1 to 143.2 N · s m−1. (paper)
Primary Subject
Secondary Subject
Source
Available from http://dx.doi.org/10.1088/1361-6463/ab5bbb; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue